Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Email:[email protected] & [email protected]
Your Position :Home->Past Journals Catalog->2020 Vol.39 No.3

Sample Sizes for Paraffin Section of Amphibian Skin-a Case Study of Capillary Density in Leptobrachium boringii
Author of the article:XU Shuang1,2, DAI Qiang1, ZHANG Pizhu1,2, ZHENG Yuchi1*
Author's Workplace:1. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Key Words:paraffin section; amphibian; skin; capillary density; sampling design; resampling
Abstract:Paraffin section is commonly used for skin characterization in amphibians. However, the standard of sampling design for this group of animals still remains largely unexplored. Because characteristics such as capillary density that cannot be measured directly may require large sample sizes, an exploration of the ideal sampling design for quantifying them will be beneficial. In this study, we quantified the density of capillaries beneath the epidermis in the Emei mustache toad (Leptobrachium boringii) and examined the required sample size through resampling simulations. We obtained the sections for 10 body regions of 2 males, and compared 29 simulated sampling designs with the actual one. The results showed that for most regions, a minimum sample size of approximately 20 sections or more were required for the small individual and 15 sections or more for the large individual. We suggested that all paraffin sections of an amphibian skin sample should be prepared for quantification, which may require an intensive sampling effort for certain characteristics. Capillary densities were significantly negatively correlated with sample sizes required. This could be partly explained by a more even distribution of capillaries in regions with higher capillary densities. Such a correlation might contribute to sampling design if it could be confirmed in other amphibians by further studies.
2020,39(3): 274-280 收稿日期:2020-01-16
作者簡介:許雙(1994—),女,碩士研究生,研究方向:兩棲爬行動物系統與進化,E-mail:[email protected]
*通信作者:鄭渝池,E-mail:[email protected]
曹燕, 謝鋒, 江建平. 2011. 齒突蟾屬四個物種皮膚的組織學觀察[J]. 四川動物, 30(2): 214-219.
耿欣蓮. 1959. 大蟾蜍(Bufo bufo gargarizans Cantor) 皮膚在不同季節中的組織學觀察[J]. 動物學報, 11(3): 313-325.
李洋, 金磊, 李昌春, 等. 2009. 黑斑蛙、虎紋蛙和牛蛙皮膚的比較組織學[J]. 安徽師范大學學報(自然科學版), 32(5): 466-470.
劉滿櫻, 肖向紅, 徐佳佳, 等. 2007. 東北林蛙皮膚及其腺體組織形態學觀察[J]. 野生動物, 28(4): 6-9.
唐以杰, 曾小龍, 方昆陽. 1999. 中國大鯢皮膚的組織學觀察[J]. 廣東科技, (7): 26-27.
Barej MF, Boehme W, Perry SF, et al. 2010. The hairy frog, a curly fighter? A novel hypothesis on the function of hairs and claw-like terminal phalanges, including their biological and systematic significance (Anura: Arthroleptidae: Trichobatrachus)[J]. Revue Suisse de Zoologie, 117(2): 243-263.
Barrionuevo JS. 2017. Skin structure variation in water frogs of the genus Telmatobius (Anura: Telmatobiidae)[J]. Salamandra, 53(2): 183-192
Bentley AJ, Yorio T. 1979. Do frogs drinks?[J]. Journal of Experimental Biology, 79(1): 41-46.
Bickford D, Iskandar D, Barlian A. 2008. A lungless frog discovered on Borneo[J]. Current Biology, 18(9): 374-375.
Brunetti AE, Hermida GN, Faivovich J. 2012. New insights into sexually dimorphic skin glands of anurans: the structure and ultrastructure of the mental and lateral glands in Hypsiboas punctatus (Amphibia: Anura: Hylidae)[J]. Journal of Morphology, 273(11): 1257-1271.
Brunetti AE, Hermida GN, Iurman MG, et al. 2016. Odorous secretions in anurans: morphological and functional assessment of serous glands as a source of volatile compounds in the skin of the treefrog Hypsiboas pulchellus (Amphibia: Anura: Hylidae)[J]. Journal of Anatomy, 228(3): 430-442.
Chammas SM, Carneiro SM, Ferro RS, et al. 2015. Development of integument and cutaneous glands in larval, juvenile and adult toads (Rhinella granulosa): a morphological and morphometric study[J]. Acta Zoologica, 96(4): 460-477.
Czopek J. 1965. Quantitative studies on the morphology of respiratory surfaces in amphibians[J]. Acta Anatomica, 62(2): 296.
de Almeida PG, Felsemburgh FA, Azevedo RA, et al. 2007. Morphological re-evaluation of the parotoid glands of Bufo ictericus (Amphibia, Anura, Bufonidae)[J]. Contributions to Zoology, 76(3): 145-152.
de Saint-Aubain ML. 1982. The morphology of amphibian skin vascularization before and after metamorphosis[J]. Zoomorphology, 100(1): 55-63.
Duellman WE, Trueb L. 1994. Biology of amphibians[M]. London: Johns Hopkins.
Evans CM, Brodie ED. 1994. Adhesive strength of amphibian skin secretions[J]. Journal of Herpetology, 28(4): 499-502.
Feder ME, Burggren WW. 1985. Skin breathing in vertebrates[J]. Scientific American, 253(5): 126-143.
Fox H. 1986. Biology of the integument[M]. Berlin: Springer.
Gon?alves VF, de Brito-Gitirana L. 2008. Structure of the sexually dimorphic gland of Cycloramphus fuliginosus (Amphibia, Anura, Cycloramphidae)[J]. Micron, 39(1): 32-39.
Greven H, Zanger K, Schwinger G. 1995. Mechanical properties of the skin of Xenopus laevis (Anura, Amphibia)[J]. Journal of Morphology, 224(1): 15-22.
Hudson CM, Fu J. 2013. Male-biased sexual size dimorphism, resource defense polygyny, and multiple paternity in the Emei moustache toad (Leptobrachium boringii)[J/OL]. PLoS ONE, 8(6): e67502[2019-08-30].
Jeckel AM, Saporito RA, Grant T. 2015. The relationship between poison frog chemical defenses and age, body size, and sex[J/OL]. Frontiers in Zoology, 12(1): 27[2019-08-30].
Kitson DL, Roberts A. 1983. Competition during innervation of embryonic amphibian head skin[J]. Proceedings of the Royal Society of London Series B: Biological Sciences, 218(1210): 49-59.
Krogh A. 1904. On the cutaneous and pulmonary respiration of the frog: a contribution to the theory of the gas exchange between the blood and the atmosphere[J]. Skandinavisches Archiv für Physiologie, 15(1): 328-419.
Malvin G. 1993. Microcirculatory effects of hypoxic and hypercapnic vasoconstriction in frog skin[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 264(2): 435-439.
Malvin GM. 1988. Microvascular regulation of cutaneous gas exchange in amphibians[J]. American Zoologist, 28(3): 999-1007.
Marrero MB, Hillyard SD. 1985. Differences in c-AMP levels in epithelial cells from pelvic and pectoral regions of the toad skin[J]. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 82(1): 69-73.
Mearow KM, Diamond J. 1988. Merkel cells and the mechanosensitivity of normal and regenerating nerves in Xenopus skin[J]. Neuroscience, 26(2): 695-708.
Moalli R, Meyers RS, Jackson DC, et al. 1980. Skin circulation of the frog, Rana catesbeiana: distribution and dynamics[J]. Respiration Physiology, 40(2): 137-148.
Norris DO, Austin HB, Huazi AS. 1989. Induction of cloacal and dermal skin glands of tiger salamander larvae, (Ambystoma tigrinum): effects of testosterone and prolactin[J]. General and Comparative Endocrinology, 73(2): 194-204.
Nussbaum RA, Wilkinson M. 1995. A new genus of lungless tetrapod: a radically divergent caecilian (Amphibia: Gymnophiona)[J]. Proceedings of the Royal Society of London Series B: Biological Sciences, 261(1362): 331-335.
Ponssa ML, Barrionuevo JS, Pucci AF, et al. 2017. Morphometric variations in the skin layers of frogs: an exploration into their relation with ecological parameters in Leptodactylus (Anura, Leptodactylidae), with an emphasis on the Eberth-Kastschenko layer[J]. The Anatomical Record, 300(10): 1895-1909.
Prates I, Antoniazzi MM, Sciani JM, et al. 2012. Skin glands, poison and mimicry in dendrobatid and leptodactylid amphibians[J]. Journal of Morphology, 273(3): 279-290.
Preece A. 1965. A manual for histologic technicians, 2nd edition[M]. Boston: Little, Brown and Company.
Robischon M. 2017. Surface-area-to-volume ratios, fluid dynamics & gas diffusion: four frogs & their oxygen flux[J]. The American Biology Teacher, 79(1): 64-67.
Roth JJ. 1973. Vascular supply to the ventral pelvic region of anurans as related to water balance[J]. Journal of Morphology, 140(4): 443-460.
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis[J]. Nature Methods, 9(7): 671-675.
Sullivan PA, vonSeckendorff HK, Hillyard SD. 2000. Effects of anion substitution on hydration behavior and water uptake of the red-spotted toad, Bufo punctatus: is there an anion paradox in amphibian skin?[J]. Chemical Senses, 25(2): 167-172.
Toledo RC, Jared C. 1993. Cutaneous adaptations to water balance in amphibians[J]. Comparative Biochemistry and Physiology Part A: Physiology, 105(4): 593-608.
VanBuren CS, Norman DB, Fr?bisch NB. 2019. Examining the relationship between sexual dimorphism in skin anatomy and body size in the white-lipped treefrog, Litoria infrafrenata (Anura: Hylidae)[J]. Zoological Journal of the Linnean Society, 186(2): 491-500.
Wanninger M, Schwaha T, Heiss E. 2018. Form and function of the skin glands in the Himalayan newt Tylototriton verrucosus[J/OL]. Zoological Letters, 4(1): 15[2019-08-30].
Woodhams DC, Ardipradja K, Alford RA, et al. 2007. Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses[J]. Animal Conservation, 10(4): 409-417.
Yang C, Fu T, Lan X, et al. 2019. Comparative skin histology of frogs reveals high-elevation adaptation of the Tibetan Nanorana parkeri[J]. Asian Herpetological Research, 10(2): 79-85.
Zheng Y, Rao D, Murphy RW, et al. 2011. Reproductive behavior and underwater calls in the Emei mustache toad, Leptobrachium boringii[J]. Asian Herpetological Research, 2(4): 199-215.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology